HANDONG
UNITWIN FELLOWSHIP

COURSE SYLLABUS

Professor's Information	
Name	Olena Tymoshenko
Affiliated University	National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Course Information				
Course Name	History of the development of mathematical	Prerequisite Course	Mathematical logic and	
Course Date	$2022-09-01$	\sim 2022-12-29	Course Language	Ukrainian
Keyword	Angle trisection,	Greek mathematicians,	History of mathematic, Doubling the cube,	

Course

Description
(100 ~200 words)

Course Goals and Objectives
(Approximately
100 words)

Methods of mathematical research are used in a wide variety of fields of knowledge. In this course you will see firsthand many of the results that have made what mathematics is today and meet the mathematicians that created them. The course provides an overview of some of mathematical ideas during the history, say classical problems of ancient Greek mathematics lead to involved mathematical theories including transcendent numbers or Galois theory; chinese double regula falsi method transforms to modern Newton-Raphson method of finding roots of nonlinear equations; babylonian ideas of solving quadratic equations turns out be utilized in modern algebra; arabic tables of approximate values of trigonometric functions are useful nowadays in deep procedures of numerical mathematics and so on. All of these is explained in the corresponding lectures of the course.
The course will survey major mathematical developments beginning with ancient Greeks
Mathematics did not arise in a vacuum, and students should know the origin of the basic mathematical ideas as well as the modern treatment of these ideas in connection with the original ones. After this course students will demonstrate their knowledge of basic mathematical-historical facts; they will demonstrate understanding of the development of mathematical ideas and mathematical thought.
Course topics covered include geometry, number theory, algebra, trigonometry, analytic geometry, probability, and calculus. This course aims to deepen student understanding of modern mathematics by contrasting it with mathematics from ancient. After completing the course a student will:

- Gain an understanding of the historical and biographical context of several most important
(The format : Title, Author/Editor, Publisher, Year of Publication)

1. A History of Mathematics, 2nd Ed., Carl B. Boyer, Revised by Uta C. Merzbach/ Wiley, NY, 1991.
2. A History of Mathematics: An Introduction, Victor J. Katz/ Pearson, 2009
3. Mathematics and Its History, John Stillwell/ Springer (2010)
4. IA History of Mathematics, R. Mankevich/ Lych,(2011)
5. A concise history of mathematics, Struik D., vol. 1 and 2/ Dover, New York (1948)

History of the development of mathematical ideas more focused on mathematics than the same class would be if it were in the history department. Prerequisites include knowledge of basic definitions of mathematical analysis, linear algebra, and probability theory.

Course
Requirements and Grades

Weekly Schedule

Week	Main Topics
Week 1	The Origins of Mathematics.
Week 2	Mathematics in Early Civilizations
Week 3	Ancient Greece mathematics
Week 4	The famous problems of antiquity.
Week 5	Doubling the cube, Squaring the circle
Week 6	Straightedge and compass construction. The basic constructions
Week 7	Angle trisection
Week 8	Geometric construction of the square root and other generalizations
Week 9	Constructing regular polygons. Gauss-Wantzel theorem.
Week 10	History of the origin and development of linear and square equations
Week 11	Cardano, Tartaglia, and the solution to the cubic equation
Week 12	Number Theory and the Queen of Mathematics
Week 13	
Week 14	
Week 15	
Week 16	

